学术报告
-
关于涉及处于次一般位置超曲面的第二基本定理最新进展的系列报告Nevanlinna理论是复分析、复几何中的重要研究领域,其核心是两个基本定理,特别是后者。报告人此次所做的系列报告基于最近在涉及处于次一般位置超曲面的第二基本定理研究方面最新进展及其特别的观察视角。系列报告将分三次:第一次报告将从涉及处于次一般位置超曲面的第二基本定理的背景入手并简要介绍报告人最近工作的动机、结果、例子和证明框架;后两次报告将给出基于滤过方法和Chow权、Hilbert权方法的不同证明以及如何给出含截断水平的计数函数的精细估计的细节石磊 博士 (贵州师范大学)zoom会议室2020年10月11日(周日) 9:00-10:00(第一次)
-
Partial C^0 Estimate and Hamilton-Tian ConjectureHamilton-Tian conjecture says that the Kahler-Ricci flow on Fano manifolds converges to a limit space admitting Kahler-Ricci soliton outside the singularity of dimension 4. This conjecture has been proved by Chen-Wang and Bamler. Their proof depends on the metric geometry. Using Liu-Szekelyhidi's work on partial C^0 estimate, we will prove a weak version of Hamilton-Tian conjecture.王枫 副教授 (浙江大学)腾讯会议室2020年9月10日 14:00-15:00
-
Affine Function Valued ValuationsA function valued valuation is an additive map defined on convex bodies and taking values in a function space. We say a valuation is affine if it behaves “nicely” under affine transforms, e.g., volumes, Euler characteristics (constant functions), moment vectors (understand as linear functions), support functions, Minkowski functionals, and so on. In this talk, I will show some classifications of SL(n) covariant or contravariant valuations which not only characterize valuations mentioned above but also characterize some (functional) extensions of Lp projection bodies and Lp moment bodies (polar L-p intersection bodies). Some applications will be also introduced.李晋 博士(Vienna University of Technology)腾讯会议室2020年9月10日 15:00-16:00
-
Willmore Deformation between Minimal Surfaces in H^n and S^nIn this talk we will show that there is a natural Willmore deformation between minimal surfaces in H^n and S^n. The deformation of the Veronese two sphere and its generalization provide examples of complete minimal surfaces in H^4 with varying Willmore energy.王鹏 教授 (福建师范大学)zoom会议室2020年8月8日(周六) 9:30-10:30
-
不可压缩Navier-Stokes方程本报告系统介绍千禧问题之一: 不可压缩Navier-Stokes方程相关性质. 首先介绍该方程的来源及背景, 弱解存在性、正则性等的研究历史和现状; 其次, 介绍解的长时间渐近行为性质; 最后列出一些目前尚未解决的重要问题.韩丕功 研究员 (中科院数学与系统科学研究院)腾讯会议室2020年7月21日(周一)上午9:30--11:00
-
The Hyperbolic Metric Applied to the Roper-Suffridge Extension OperatorThe hyperbolic metric plays an important role in complex analysis and geometric function theory. In this talk, we will establish several interesting properties for the hyperbolic metric of a simply connected domain of the complex plane, which can be applied to discuss the Roper-Suffridge extension operator and its modification. This hyperbolic metric can be viewed as providing an alternative approach to study biholomorphic mappings in several complex variables. This is joint work with Prof. Taishun Liu.王建飞 教授 (华侨大学)zoom会议室2020年7月17日 星期五 13:30-14:30
-
Calabi-Yau Metrics with Cone Singularities along Intersecting Complex Lines: ...In collaboration with G. Edwards we produce (local) Calabi-Yau metrics, in two complex dimensions, with cone singularities along intersecting complex lines, for cone angles that strictly violate the Troyanov condition. We identify the tangent cone at the origin as a product of two 2-cones. In the tangent cone limit, the line with the smallest cone angle remains apart while the other lines collide into a single cone factor.Matrin de Borbon (Université de Nantes)zoom会议室2020年7月9日 20:00
-
Symplectic Fillings of Lens Spaces and Seifert Fibered SpacesWe apply Menke’s JSJ decomposition for symplectic fillings to several families of contact 3-manifolds. Among other results, we complete the classification up to diffeomorphism of strong symplectic fillings of lens spaces. We reduce the classification of the strong symplectic fillings of large families of Seifert fibered spaces to that of lens spaces. We show that fillings of contact manifolds obtained by Legendrian surgery on certain Legendrian knots are the result of attaching a symplectic 2-handle to a filling of a lens space. This is joint work with Austin Christian.李友林 教授(上海交通大学)腾讯会议室2020年7月4日 16:20-17:20