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ABSTRACT. Let (F,G) € C[z,y]? be a Jacobian pair and o : (a,b) + (F(a,b), G(a,b)) for (a,b) €
C? the corresponding Keller map. The local bijectivity of Keller maps tells that for p € C2, there
exist neighborhoods O, of p and Oy of o(p) such that o, = olo, : Op = Oy is a bijection.
Thus if there exist po, p1 € C? with po # p1, o(po) = o(p1), then the local bijectivity implies that
agllapo 1 Opy = Op, is a bijection between some neighborhoods of po and p1. We generalize this
result in various aspects, which lead us to give a proof of injectivity of Keller maps and thus the 2-
dimensional Jacobian conjecture. Among those generalizations, one is the following (cf. Theorem
1.5): For any (po,p1) = ((zo,%0), (z1,51)) € C* x C* satisfying po # p1, o(po) = o(p1), ko <

ly1l+rr

[ FE 2 K9 for some preassigned x; € Rsg, there

k1lz1]"? < Kalro| < kal@a]™® < Ko, Lpgupy 1=

exists (go,q1) € C* x C? satisfying the same conditions, and furthermore £, .4, > £po.p; -
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1. MAIN THEOREM

Let us start with an arbitrary Jacobian pair (F,G) € C[z,y]?, i.e., a pair of polynomials on two

variables z,y with a nonzero constant Jacobian determinant

OF OF
0. 0

J(F,G) := ag ag € Cyo. (1.1)
Or Oy

Assume that the corresponding Keller map o : C? — C? sending, for p = (a,b) € C?,
p = (F(p),G(p)) == (F(a,b),G(a,b)), (1.2)
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is not injective, namely, for some pg = (20, y0), p1 = (71,y1) € C2,

o(po) = o(p1), po# p1. (1.3)

The local bijectivity of Keller maps says that for any p € C?, there exist neighborhoods O, of
p and Ogy(;,) of o(p) such that o, = o|o, is a bijection between these two neighborhoods. This
implies that oljllapo 1 Op, — Oy, is a bijection between some neighborhoods O, of py and O,
of p1 (we may assume O, and O,, are disjoint), i.e., any gop € Oy, is in 1-1 correspondence with
q1 € Op, such that o(go) = 0(q1) and go # ¢1. In this paper we generalize this result in various
aspects, which lead us to present a proof of injectivity of Keller maps, which implies the well-known
Jacobian conjecture (see, e.g., the References).

Theorem 1.1. (Main Theorem) Let (F,G) € C[xz,y]? be a Jacobian pair. Then the Keller map

o s injective. In particular, the 2-dimensional Jacobian conjecture holds, i.e., F,G are generators

of Clz,y].

First we give some formulations. Fix (once and for all) a sufficiently large ¢ € Z~o. Applying
the following variable change,

(z,y) = (24 (+ ) 2 +y), (1.4)

and rescaling F, G, we can assume, for some m € Zx,

Supp F C Aoepy,  Fr=(x+y)™, J(F,G)=1, (1.5)
where
e Supp F := {(i,j) € ZQZO | Coett (F, z'y7) # 0} is the support of F [cf. Convention 2.1 (2) (iv)
for notation Coeg(F, z'y7)],
o Ag¢p is the triangular with vertices 0 = (0,0), £ = (m,0), n = (0,m),
e [ is the edge of Supp F' linking vertices &, 7,
e F7, which we refer to as the leading part of F, is the part of F' corresponding to the edge

L [which means that Supp F, = L N Supp F = {(m —1i,i) € C?|i =0,1,...,m}].

The reason we take the variable change (1.4) is to use the leading part F, of F' to control F' in

some sense [cf. (3.11)], which guides us to obtain Theorem 1.3.

Throughout the paper, we use the following notations,

(po,p1) = ((z0,%0), (x1,31)) € C* x C* = C*, (1.6)
V = {(po,p1) = ((zo,90), (x1,51)) € C*| o(po) = o (p1), po # p1}, (1.7)
Veoer = {(p0,p1) = (w0, 90), (x1,51)) €V | 20 = &0, 21 = &1, (1.8)

for any &y, & € C. Then V' # () by assumption (1.3). The main result used in the proof of Theorem
1.1 is the following.

Theorem 1.2. (i) There exist &9, &1 € C such that Ve, ¢ = 0.
(il) Fiz any &, &1 € C satisfying (i). Denote, for (po,p1) = ((iﬁo,yo)a (3317241)) eV,
dp07p1 = |$0 - fO’Q + ‘371 - §1|2- (1.9)
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Then for any (po,p1) € V, there exists (qo,q1) = ((:bo,yo), (Jvl,yl)) €V such that

dgo,q1 < po,pr - (1.10)

After a proof of this result, it is then not surprising that it can be used to give a proof of Theorem
1.1 by taking some kind of “limit” [cf. (7.2)], which can guide us to derive a contradiction. We
would like to mention that at a first sight, Theorem 1.2 (i) seems to be obvious, however its proof
is highly nontrivial to us, it needs several results, which we state below. Here is the first one.

Theorem 1.3. Den0t67 fOT’ (p07p1) = ((x(]vy()): (37173/1)) € V7

hp07p1 :maX{|$1‘v‘y1|,|~’50|,|90’}, (111)
and call hy, ,, the height of (po,p1). There exists sy € Rsg (depending on m = deg F, deg G
and coefficients of F and G; cf. Remark 3.5) satisfying the following: For any (po,p1) =

((z0,90), (x1,91)) € V with
hpopr = S0, (1.12)

we must have

|0 + ol < h) jzr+ | < h (1.13)
In particular if hy, p, = max{|z|,|ye|} for somet € {0,1}, then,
m+1
la —b] < n:w’?, (1.14)
for any a,b € {|z¢|, |ys|, hpopr }» where ny = min {|z4|, [y }-
To prove Theorem 1.2 (i), we assume conversely that, for all &y, &; € C,
Verer # 0. (1.15)

Then we are able to obtain the following.
Theorem 1.4. Under the assumption (1.15), we have the following.
(i) The following subset of V is a nonempty closed bounded subset of C* for any ko, k1 € R,
Ao s = {(po,p1) = (o, w0), (x1,91)) € V | |zo| = ko, |21] = k1 }. (1.16)
(ii) The following is a well-defined function on ko, ki € R>g,
Yok = max {[y1] | (po,p1) = ((z0,90), (21,41)) € Arg s }- (1.17)

(iii) The Vi ey S an “almost strictly” increasing function on both variables ko, k1 € R>q in

the following sense [we need to require ko > 0 in (1.18) (b), that is why we use the words

“almost strictly”],
@) Yigks > Vot 4 Ko >ko =0, k1 >0,
(D) Viok, > Viody 4 Ko >0, Kj > ki > 0. (1.18)
This result is then used to prove the following (which is the hardest part of the paper).

Theorem 1.5. (1) There ezist k; € Rsg such that the following hold.
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(2)

(i) Denote by Vo the subset of V' such that all its elements (po,p1) = ((z0,¥0), (z1,91))
simultaneously satisfy one (and the only one) of (1.19) or (1.20). Then Vi # 0.

Y1|+ K7
(a) Ky < K1’x1|'€2 < 53|$0| < R4‘x1|"€5 < kg, (b) €p07p1 = ‘ |:C|1|,<8 > Ko; (1.19)
(a) ko < [f1]™ < [fa] < [f5]™ < ks, (b) Kalzo| ™™ < aa],
(©) Loopn = LfafT| + 2] + ] = r, (1.20)

where, f;’s are some rational functions on g, x1,y1, and k; will be chosen such that
there exist 0; € R satisfying: when conditions hold, we have

0o < |zol, [z1] < 01, [f], |ly1] > 6o, (1.21)

where f is any denominator of any f;.

(ii) For any (po,p1) € Vo, no equality can occur in the first or last inequality of (1.19) (a)
[or (1.20) (a)] or in the inequality of (1.20) (b); further, two equalities cannot simul-
taneously occur in the second and third inequalities of (1.19) (a) [or (1.20) (a)].

For any (po,p1) € Vb, there exists (qo,q1) = ((:to,y'o), (i‘l,yl)) € Vy such that

Coo.qr > Lpopr- (1.22)

Remark 1.6. (1) Throughout the paper, we will frequently use the local bijectivity of Keller

maps. Theorem 1.5 (2) says that [assume for example, we have case (1.19)]

(b) |y1’ + K7 |y1| + K7
|1]%s |z1]"s

(¢) o(q0) = o(q1), (d) g0 # a1- (1.23)

If we regard o, 9o, T1,71 as 4 free variables, then the local bijectivity always allows us to

(a) ko < K1|21|™ < K3|do| < Kald1|™ < K,

obtain (1.23) (c), which imposes two restrictions on 4 variables. We can impose at most
two more “nontrivial” restrictions on them [we regard (1.23) (d) as a trivial restriction, see
below]. The main difficulty for us is how to impose two more “solvable” restrictions on
variables [see (3) below] to control Zo, Yo, <1, 91 in order to achieve our goal of “deriving a
contradiction”. However, it seems to us that two more restrictions are always insufficient
to achieve the goal. Here, condition (1.23) (b) imposes one more restriction, and we have
one free variable left. However there are 4 restrictions in (1.23) (a), thus in general there
will be no solutions. Thanks to Theorem 1.5 (1) (ii) [see (2) below], we only need to take
care of one restriction in (1.23) (a) each time [cf. (6.6)] since we are always under a “local”
situation (i.e., we are only concerned with a small neighborhood of some points each time),
and thus the inequation in (1.23) (a) is solvable [we do not need to consider condition
(1.23) (d) under the “local” situation, we only need to take care of it when we take some
kind of “limit”, cf. (7.2)].

Condition (1.23) (b) is not only used to control |Z1| and ||, but also used to take the
“limit”; while (1.23) (a) is used to control |ig| and |Z1]. We remark that the requirement
“k7 > 07 in (1.19) (b) [or the last two terms in (1.20) (c)] will guarantee that the corre-

spondent inequation (1.23) (b) is solvable [see (3) below, cf. Remark 6.2]. Finally we would
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like to mention that to find conditions like the ones in (1.19) or (1.20) satisfying Theorem
1.5(1) (ii) has been extremely difficult for us, we achieve this by using Theorem 1.4 to
prove several technical lemmas (cf. Assumption 5.1 and Lemmas 5.2-5.11).
(3) One may expect to have some statements such as one of the following:
(i) For any (po,p1) € V with |zg|% 4 |z1|%* < s (for some 6;, s € Rsq), there exists
(go,q1) € V such that

(a) [o|” + |&1|* < s, (b) [921% > [y|*. (1.24)
(ii) For any (po,p1) € V with |z1]% < |y1]% + s, there exists (go,q1) € V such that
(a) 2™ <[]+, (b) 90| — |do|™ > |yo|” — |wo|. (1.25)

If a statement such as one of the above could be obtained, then a proof of Theorem 1.1
would be easier. At a first sight, the condition (1.24)(a) [or (1.10)] only imposes one
restriction on variables, however it in fact contains 2 hidden restrictions [see arguments
after (7.7)] simply because the left-hand side of “<” has 2 positive terms with absolute
values containing variables. The second condition in (1.25) is unsolvable as will be explained
in Remark 6.2. We would also like to point out that to obtain Theorem 1.1, we always
need to take some kind of “limit” [cf. (7.2)] to derive a contradiction. Thus some condition
such as (1.10), (1.23) (b), (1.24) (b) or (1.25) (b) is necessary in order to take the “limit”.

2. SOME PREPARATIONS

We need some conventions and notations, which, for easy reference, are listed as follows.

Convention 2.1. (1) A complex number is written as a = aye + aimt for some aye, aim € R,
where ¢ = /—1. If a® appears in an expression, then we always assume b € R, and in case

a # 0, we interpret a’ as the unique complex number r°e??* by writing a = re’® for some
r € Ryg, —m < § < 7 and e is the natural number.

(2) Let P =3 piy®tt € C(x)((y)) with a € Z, p; € C(x).

iGZZO

(i) Assume pg = 1. For any 8 € Q with a8 € Z, we always interpret P? as

oo
PP = yoB (1 + 3
j=1

() S wr)') e crw. (2.)

1€Z>0

where in general, we denote the multi-nomial coefficient

k _k(k—1) (b= (M At A) +1) 22)
Ao, Ai) Aol : :
Then
(PP = Ph¥, (2.3)

for any 8 € Q, 8/ € Z with af8,aBB € Z. If pg # 1, then pg is in general a multi-
valued function on pg, and if we fix a choice of pg , then (2.3) only holds when ' € Z

[fortunately we will only encounter this situation, cf. (3.23) and statements after it].
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(ii) For Q1,Q2 € C(z)((y)), we use the following notation [as long as it is algebraically a
well-defined element in C(z)((y))]

P(Q1,Q2) = Pl(z,4)=(01,Q2) = 2_Pi(Q1) g (2.4)

(iii) If @1,Q2 € C, and Q2 # 0 in case (2.4) contains some negative powers of (2, we
also use (2.4) to denote a well-defined complex number as long as p;(Q1) exists for all
posible i and the series (2.4) converges absolutely.

(iv) For any Q@ = > ;7. gy € C(x)((y)), by comparing coefficients of y2+* for i > 0,
there exists uniquely b; € C(z) such that

Bt

Q=>3bP% (2.5)
1=0

B+i

a). I Q =

We call b; the coefficient of pi in @, and denote by Coe(Q, P
Zi,j qi;x'y’ with ¢;; € C, we also denote Coer(Q, 2'y’) = ¢ij.

(3) Throughout the paper, we need two (and sometimes more) independent parameters k > 1
(i.e., E — 00) and £ — 0. We use the following convention: Symbols s, s; for j > 0 always
denote some (possibly sufficiently large) numbers independent of £, k. We use O(€) for
i € Q>0 to denote any element P in C(x)((y)) (or especially in C) such that P(&,y)

converges absolutely and |€~*P(%,9)| < s for some fixed s, where (i,7) is in some required
region which will be specified in the context.

Let P =3, piy’ € C(z)((y)), pj € C(z), and (z0,y0) € C? with yo # 0. If pj(z) exists for all
possible j, and zg = Zj |pj(:c0)y6| converges, then zq is called the absolute converging value of P

at (zo,y0), denoted by Ay, 4,)(P) [or by Ay, (P) if P does not depend on x].

Definition 2.2. (1) Let P be as above and @ = ", ¢;y" € C((y)), ¢; € R0, z9 € C. If p;(wo)

exists and
pi(z0)| < 4, (2.6)

for all possible 4, then we say @ is a controlling function for P on y at point xg, and denote
P <@ or QD P, (2.7)

or P 4, Q or Q >, P when there is no confusion. In particular if P, () do not depend on
y then we write P <%0 @ or @ >0 P (thus a < b for a,b € C simply means that |a| < b
with b > 0).

(2) An element in C((y)) with non-negative coefficients (such as @ above) is called a controlling
function on y.

(3) I Q = qoy™ + >0 qjy** € C((y)) is a controlling function on y with ¢; € R>¢ and

go > 0, then we always use the same symbol with subscripts “igo” and “,es” to denote

the elements

Qigo=0p " Z:Oijj, Qneg = qoy” (1—qo_1 Z()ijj) =qoy* (1 —Qigo) =2q0y“ — Q. (2.8)
7> 7>
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We call Qigo the ignored part of @, and Queg the negative correspondence of @ [in sense of

(2.10) and (2.11), where a, —k are nonpositive].
Lemma 2.3. (1) If

P = poy® + gopjy““ €C@)((y), Q=qoy*+ goq]‘ya” e C(()), (2.9)

with P <17° Q, 7o € C and |po(z0)| = qo € R>o, then

F . 19

(a) 87y _50 dy’ (b) P® Slfff a g (qoya)—an—irb fora,beQ_, (2.10)

neg —Y neg

(qoy™)* .
k a2k ~—Fk 1 — kQigo ik €2z,
Q ﬂy (qu ) Qneg ﬂy k’Q (211)
(qoy™)* (1 + —22° ) ifk e Qso with k < 1.
( 1- Qigo) -

where (2.10) (a) holds under the condition: either both P and Q are power series of y (in

this case the sign is “+ 7), or else both are polynomials on y~' (in this case the sign is

“_ »).
(2) If‘,rO)yO € C with Yo # O’ and Pl S]C:;O Q17 P2 S‘ZO Q27 then

Afagyo) (P1P2) < Agye) (Q1) Agyo) (Q2) = Qu([yol)Q2([yol)- (2.12)

Proof. One can see that (2) and (2.10) (a) are obvious, and (2.10) (b), (2.11) are obtained by
noting that for a,b € Q_ and i € Z~¢, one has

AN ) Q=)= {E .

This proves the lemma. O

Take

F=fy+ ij fiy' € Clallly), (2.13)

with f; € Clz] and f1 # 0. Regarding F as a formal function on y (with parameter x being regarded

as fixed), we have the formal inverse function denoted by yz € Clz, FYIE) € C(a)[[F]] such
that [cf. (2.5)]

y = yp(F) = b1F + Y biF", (2.14)
=2

with b; = Coet(y, F) € Clz, f;!] being determined by by = f; ' € Clz, f;!] and (we do not need

to use the following explicit expression of b;, we only want to present that b;’s exist)

-1 . § /i ¢ . I _
- J —A1—Aa—-—Ap FAL FA An
b = > b;fi ZZQ) 2 (A A A )fl b [t 15 fats (215)
j=1 =0 NEZL>0, M A2500, A 20 N1 A2s 200y An

A2+ AnAp=1i—j

for i > 2, which is obtained by comparing the coefficients of y in (2.14).
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Lemma 2.4. For a; € RZO with a1 > 0, let

~

m . A w .
F=ay+ > ay €Clly]] and Fpeg = a1y — Y @y, (2.16)
=2 1=2

be a controlling function on y and its negative correspendence [cf. (2.8)], and let

A ~ A 0 ~ ~ 17
Y=y (Freg) = b1 Freg + . biF ey, (2.17)
=2
be the formal inverse function of Fneg, where by = dl_l and b; = Coeft (Y, Fﬁleg) € C. Then
(1) y"&(Fpeg) is a controlling function on Freg, i.c., fori>1,

(2) If F <50 F with F as in (2.13) and fi(xo) ezists for all possible i and |fi(z0)| = a1, then
y=yp(F) <0 y™&(F), e, b <™ b, (2.19)

where b; = Coefr (y, Fi) is as in (2.14), and b; <I*° b; means that |bi(x0)| < b;. In particular

y <, y s (F), (2.20)

where the right side of “<, 7 is regarded as a function on y by substituting F by (2.16).

Proof. Note that (1) follows from (2) by simply taking F' = a;y. Thus we prove (2). We want to
prove, for i > 1,

Oy wy Ay (2.21)
oF =V dFi, |

where the left-hand side is understood as that we first use (2.14) to regard y as a function on F

(with parameter x) and apply 681; to it, then regard the result as a function on y (and the like for

the right-hand side, which does not contain the parameter x). By (2.10) (a), we have % <50 dF

Tya
and thus by (2.10) (b),
\ -1 N -1 N ~1
oF <xo (di) _ [ e
(9y -Y dy neg N dy ’
ie., g% <50 d;}—ig and (2.21) holds for ¢ = 1. Inductively, by Lemma 2.3,
Oy 02y 00y ((’)Fyl
OFi OF \oF=1/  Oy\oFi-1/\ 9y
d (d=ly N (dFpeg\ -1 d'y
<ro — | —= = —. 2.22
Y dy <dF;;g1> ( dy ) dF%eg ( )



This proves (2.21). Using (2.21) and noting from (2.14) and (2.17), we have

1 o'y 1 o'y
"Gl gFilF=0 il 9Fily=0
<To l dly ‘ = l dzy = l;
= . A . - . AL A - (N
iYdFi,, lv=0 il dFi,, | Fae=0

This proves (2.19). Since Fﬁgo F and y ¢ is a controlling function, we have y°%(F) <o yres(F.
This together with (2.19) proves (2.20). O

3. PROOF OF THEOREM 1.3

First we use (1.13) to prove (1.14): Assume hyp, p, = |y¢], ne = |a¢| (for t = 0 or 1; the proof for
the case hp, p, = |z¢], n¢ = |y¢| is exactly similar). Then the only nontrivial case in (1.14) is the

case when a = |y;|, b = |x¢|. In this case, we have

Ja = b = [Jyel — [asl| < Iy + 4

mLH _m_ m+1 %
< hpo,pl = |yt|M+1 < |.’Et’m+2 =n, R (31)

where the last inequality follows from the fact that by (1.13), we have (when |y;| = hyyp, > S0 is
sufficiently large)

_m m m(m+2)
e > [yel = b= Jye| = lye T > Jye| <07 (3:2)

To prove (1.13), assume conversely that there exists (po;, p1i) = ((in,in), (:Uli,yu)) € V for
any ¢ € Zsq satisfying

hpoiapli 2 /l:’ (33)
such that at least one of the following does not hold:
) Jwoi +yoil <hyp'ys () eyl <hgt (3.4)

Thus we obtain a sequence (po;, p1i), ¢ = 1,2, ... Since at least one of the conditions in (3.4) cannot
hold for infinite many ’s, if necessary by replacing the sequence by a subsequence [if the sequence
(Poi, p1i) is replaced by the subsequence (po;;,p1,;), then we always have i; > j; thus (3.3) still
holds after the replacement|, we may assume one of the conditions in (3.4) does not hold for all s.
If necessary by switching po; and py;, we can assume (3.4) (i) cannot hold for all 4, i.e.,

R o0, (3.5)

|x0i + y07’| 2 PoisP1i

for all ¢ > 1. We need to use the following notations:

aj ~ by, a; <bi, a; 2 b, (3.6)
which mean respectively
a; . a; a;
51 < |—| < s9, lim — =0, —| < sy,
i 1—+00 bi bi
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for some fixed s1, s2 € Rsg. By (1.5), we can write, for some f;, € C,
m—1 J+1
F=F,+F with Fi=Y y" 1Y fia" (3.7)
§=0 k=0
Since |zoi|, [Yoil < Ppy; pri> by (3.5) and (3.7) (which shows that deg F; < m — 1), we have

m—1

Fi(poi) =y, . = (Zoi +y0i)™ = Fr(poi), (3.8)

and thus [we remark that although it is possible that (xo; + yo;)™ < n"

S it is very crucial that
we have (3.9)]

F(poi) ~ Fr(poi) = (zoi + yoi)™- (3.9)
Similarly, Fi(p1i) < h;:;;u =< (0; + y0i)™ = Fr(po;). We obtain the following important fact:
F(p1) F(pu)

1= = lim

F(poi)  i=oo F(poi)

Fr(p1:) Fi(p14)

= lim Fe0d " Food _ g FLCu) (@0 )™ (3.10)
i—00 1+ ;1 ((POi)) i—oo FT, (pOi) i—o00 (JJOZ' + in)m
L\Poi

Therefore, by replacing the sequence by a subsequence, we have

lim ZH Y (3.11)
i—oo Zoi + Yoi
where w is some m-th root of unity. Furthermore, when ¢ > 1, by (3.5) we have [cf. Convention

2.1(3)]

m=3
£ = % — 0, where By := zo; + Yo (3.12)
0
Here and below, we remark that the notation “a — b” means that « is sufficiently close to b. Set
s .
By o= MY (3.13)
Zoi + Yoi

Remark 3.1. Before continuing, we would like to remark that our idea is to take some variable
change [cf. (3.16)] to send the leading part Fp, of F' to a “leading term” [cf. (3.20)], which has the
highest absolute value when (z,y) is set to po; or p1; [cf. (3.22)] so that when we expand it as a
power series of y, it converges absolutely [cf. (3.25)], and further, the inverse function converges

absolutely (cf. Lemma 3.3). Then we can derive a contradiction [cf. (3.49)].

Proof of Theorem 1.3. Now we begin our proof of (1.13) in Theorem 1.3 as follows. Since xy; # 1;
or yo; # y1; for all 7, replacing the sequence by a subsequence we may assume that either xg; # x1;

for all ¢ or else yo; # y1; for all i. By symmetry, we can assume xg; # x1; for all i. Set [where

i = /—1, cf. the statement after (3.21) to see why we need to choose such a /5]

0 if w# -1,

. (3.14)
7 else.

up =14 prx+ fox(1 —z) € Clz|,  where [y = {

We have
10



Lemma 3.2. There exists some d > 0 independent of € such that for all a € R>g with 0 <a <1,

when 1 > 1, we have
|ui(a)| > 6. (3.15)

Proof. Fix §1 € R+ to be sufficiently small.

e First assume w = 1 (then f2 = 0). By (3.13), we can then assume |3;| < §;. Then for a
with 0 < a <1, we have |uj(a)] > 1—|Bi]la > 1 — 6.

e Next assume w = —1 (then 8 = i). We can then assume |B1im| < 0% [cf. Convention
2.1(1)] and 2 — 67 < |Birel <2+ 0% by (3.13). For a with §; < a <1 — dy, we have

lui(a)] > |u1(a)im| = |Brima + B2ima(l — a)| > a(l —a) — |Brim|a > 61 (1 — 61) — 67

If 0 < a < 61, we have |u1(a)| > |ut(a)we] = |1 + Brrea| > 1—(2+62)01. f 1 -6 <a <1,
then |uj(a)| > |u1(a)re] = |1+ Bireal > (2 —361)(1 — 1) — 1.
e Now assume w # *+1 (then S = 0). We can then assume |fB1im| > 61 and |B1| < 2 + 6;.
If 0 < a < 61, we have |ui(a)] > 1 — 5161 > 1 — (24 01)01. If 61 < a < 1, then
ur(a)] = |ur(a)im| = |Brim|d1 = &7
In any case we can choose a unified § > 0 such that (3.15) holds. O

Now we fix a sufficiently large i [thus & > 0 defined in (3.12) is sufficiently small]. Set [cf. Remark
3.1, our purpose is to use the variable change (3.17) to send the leading part F, of F' to the element

(3.20) which is a term (the “leading term”) with the lowest degree of y in F', cf. (3.21)]

u = o + Pz, v =Boury " —u, B3 = 1 — %oi, (3.16)
F=pB"F(uv),  G=-p""8'G(uv) € Cla,uy,y™] c Cl)ly™].  (3.17)

Then one can easily verify that J(u,v) = % %Z = —Bof3ury~? and
Ul(zy)=0,1) = Zois  Ul(@y=1,1) = Tl Vl(@@y)=0,1) = Y0ir  Vl(@y)=(1,1) = Y1i- (3.18)

Thus we have, for g9 = (0,1), ¢1 = (1, 1),
J(F,G)=uy™?,  (F(q),G()) = (F(q1), G(qr)). (3.19)

Note that the leading part Fr, of F' contributes to F' the following element (which is the only term

in £ with the lowest y-degree —m, referred to as the leading term of F)

Bo_mFL‘(z,y)z(u,v) = 60—m<u + U>m = ugnyfm_ (320)

Since all coefficients of x and y~*

in w or v have absolute values being = the height Ay, .,
[cf. (3.16)], due to the factor B;™ in F [cf. (3.17)], we see from (3.7) and (3.12) that other terms
of F (i.e., terms in F}) can only contribute O(¢)! elements to F' [cf. Convention 2.1 (3) for notation

O(£)7]. Thus we can write, for some f; = u;™f; € Clz,u;'] € C(x) with f; = O(¢)*,

F=uty™™ (1 + in:lijj). (3.21)
j=

11



By (3.15), we see that f;(a) for 0 < a <1 is well-defined for any j and fj(a) = O(€)! [this is why
we need to choose some [ to satisfy (3.15)]. Set

sy =max{|f;(a) [ 1<j<m,0<a<1} =0(e). (3.22)

Let 0 < a < 1. Take [here we choose an m-th root of u}" to be wy, this choice will not cause any
problem since we will only encounter integral powers of u; below, cf. (2.3)]

Pi=Fm €ui'y+y*Ca)[y]] (3.23)
F=|ui(a)™y ™1+ F_), where F_=—s iyj — 0(e)". (3.24)

We have (cf. Definition 2.2 and Lemma 2.3),
~ ~ 5 _ Aoy L
P F, P <8 Pi=|u(a)| y(l— F) . (3.25)
Thus F, P converges absolutely [by Lemma 2.3 (3)] when setting = a and y = 1. Let
Py = P|(zy)=0,1) = 1+ 0(&)!, (3.26)

where the last equality can be easily seen from (3.21) and (3.23) by noting that u;(0) = 1. Write
[cf. (2.5) and (2.14)]

(i) y=wiP+ > b;PI, i) G= > P, (3.27)
Jj=2 j:—mG

for some b;,¢; € (C[:L‘,ufl], where we assume that G has the lowest y-degree —m®. To continue
the proof of Theorem 1.3, we need the following lemma. First, let 0 < a < 1.

Lemma 3.3. (1) The series in (3.27) (i) converges absolutely when setting (x, P) to (a, Py),
and

Yo(a) := Yl(z,P)=(a,pp) = w1(a) +O(E)". (3.28)

(2) Regarding (%)_1 as a series of P, it converges absolutely when setting (x, P) to (a, Pp).

(5)

(3) The series in (3.27) (ii) converges absolutely when setting (z, P) to (a, Pp).

Furthermore,

-1 1
= — a)+0(€)". 3.29
(z,P)=(a,Po) " UI( ) ( ) ( )

Proof. (1) (cf. Remark 3.4 for a simpler proof) Note that the negative correspondence of P is
[cf. (2.8)]

Preg = 2[ur(a)| 'y — P = 2Juy(a)| 1y — Jur(a)| " My(1 — F_) " (3.30)
Let y8 = y"8(P,) be the inverse function of P [cf. (2.17)]. Then Lemma 2.4 shows that
y(P) <% y"&(P). (3.31)

Thus to see whether the series in (3.27) (i) [which is the left-hand side of (3.31)] converges abso-
lutely when setting (z, P) to (a, Py), it suffices to see if the series y"°8(P) [which is the right-hand
side of (3.31)] converges when setting P to |Py|. The latter is equivalent to whether (3.30) has the

solution for y when Pneg is set to |Pp| (note that the solution, if exists, must be unique by noting
12



that the inverse function of Pneg is a controlling function and a controlling function which is a
nontrivial power series of y must be a strictly increasing function). Note from (3.26) that there
exist some w € R and some fixed numbers s9, 83 € R+ (i.e., 82,83 are independent of &) such
that

|Pol =14+w with —s26& <w < s3¢. (3.32)

Consider the right-hand side of (3.30):

o if we set y to |ui(a)| — s4€ for some sufficiently large s4, then it obviously has some value
1+ wy with w; < —82& < w;
o if we set y to |ui(a)| + s5& for some sufficiently large ss, then it has some value 1 + ws
with we > 83 > w.
Since the right-hand side of (3.30) is a continuous function on y, this shows that there exists

(unique) yo € Rso such that
Pregly=yo = |Pol, and obviously, yo = |ui(a)| + O(&)!, (3.33)

i.e., (3.30) has the solution y = yo when P is set to ||, and thus the first part of (1) follows.
As for (3.28), note that Yj(a) is the solution of y in the equation Py = P|;—,. Using (3.28) in this
equation, we see that it holds up to O(¢€)?.

(2) By Lemmas 2.3 and 2.4, using (3.23)—(3.25), we have

m+1 ym+1

(3.34)

(8F )*1 a y .
ay/ =Y mlu (@1 -Q-) =" mlu(a)"(1— Q) ly=ymes(p)
where @ is the following [then the part “<7” in (3.34) follows from (3.24); the second equality
below follows from the fact in (3.22) that s; = O(€)?]

0 = slfjl % i = 0. (3.35)
£

The right-hand side of (3.34) (a controlling function) converges obviously when setting P to |Fy|
since by (3.33), we have y*°8(|Py|) = yo = |ui(a)| + O(&)! and so by (3.35),

1
0< Q_\y:yneg(lp()') =0@E)! < 1. (3.36)

This proves the first statement of (2) [cf. (2.12)]. As for the second statement, note that setting
(z, P) to (a, Py) is equivalent to setting (x,y) to (a,Yy(a)). Then (3.29) follows from (3.21), (3.22)
and (3.28).

(3) follows from (1) since G|y—, is a polynomial on y*! [cf. (3.44) and the statement after it].
This proves Lemma 3.3. 0

Remark 3.4. Let a € R with 0 < a < 1. By (3.21), we can choose sufficiently small fixed n € Rx
such that for £ = £"7, we have

ur(a)[™y™™

3.37
T (3.37)

~ m . oo .
F g lu@lmy (14 2 &y’) Sylu(@]"y™ 3 efy =
Jj= Jj=
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Thus by (2.10) (b), we have

A1 _ X i\t _ g1y \1 L (1=&19)y
P=F"w < 1 <1— &l J) - 1 (1— ) = 127y 338
Syl (1 5 el) =l (1= 12 = G s

Therefore we can in fact easily choose a simpler controlling function P for P [cf. (3.25)]:

: (1 —=&wy
P = 13— Eyly, 3.39
(o) 5 (3.39)
Then the negative correspondence of P is simply the following,
5 _ - (1 =3¢
Preg = 2[u(a)| 'y — P = |u(a)] 1%) (3.40)

1—-2&1y

and we can explicitly write down the inverse function of Pneg by solving y from (3.40) to obtain
Y °8( P eq) [Which, by Lemma 2.4 (1), must be a controlling function on P, (although it is not
obvious to see)]

14 &1t — A(t)

‘ . with
6&1 t=Preg

(i) yneg(Pneg) —

=
-
-

(ii) A(t) = (1 — 8&1|u(a)|t + 4e§yu(a)12t2)§ - (1 - al\u(a)\glt) : (1 - ag\u(a)\51t> 2 (3.41)

where 0 < aq := 243—\/5 < Qo= 2_2\/§. By Lemma 2.3, we have
_1 _1 -1
At) < (1 - a1|u(a)|51t) 2 (1 - a2|u(a)|51t> 2 4, (1 - a2|u(a)|£1t) . (3.42)

Using this, by comparing the coefficients of ' (with t = Pneg) in (3.41) (i) with that in the
right-hand side of the following, we obtain

. 2
031 (0) %61 P g 513

P (Prag) G, 10 P + o
€] Preg © 1— az‘ul(a”glpneg

From this, one easily sees that the right-hand side of (3.31) converges when P is set to | Py| because
the right-hand side of (3.43) converges when P, is set to |Py|. Thus the proof of Lemma 3.3 (1)
is easier (we have used the above proof in Lemma 3.3 as it can be adapted in some more general
situation). Furthermore, by (3.31), (3.43) and Lemma 2.3, we have

1 1
<dp . (3.44)

< a2lui(a)|E1 P
YP) T fuy(a)|P(1 - AR )

From this we also see that when we regard y—!

setting (z, P) to (a, Pp).

as a series of P, it converges absolutely when

Now we return to our proof of Theorem 1.3. By Lemma 3.3 (3), we are now safe to set (x,y) to
(0,1) and (1, 1) [which is equivalent to setting (z, P) to (0, Py) and (1, Py) respectively] in (3.27) (ii)
to obtain

0=G(1,1) - G0, 1) = f; (ej(1) = ¢;(0)) B (3.45)
14



We will need the following very simple fact for any possible 7,

1 Ci\T
o) -0 = [ s, (3.46)

0

which is obvious if ¢j(z) is a real function. To see this in general, noting that c;(z) € Clz,uj'], we
)

can write ¢;(z) = ¢é1;(x) 4+ iég5(x) with é&;(x) = (jlt]ﬂ(j;lj for some ¢é(x) € Rlz] (t =1,2), nj € Zsg

and @ = 1+ B2+ Fax(1—x), where (1, B2 are the complex conjugate numbers of 81, 32 [cf. (3.14)].
Note that ujt; € R[z] and uti|,—q = |u1(a)* > 62 when 0 < a < 1 by (3.15). Thus &;(z) is

a well defined real rational function when 0 < x < 1, and we have ¢;;(1) — ¢;(0) = fol dégi'ggw)dm.
Thus (3.46) holds.

Denote
Q= —J(F, C:)(f)_l _ —uly_2(—)_1, (3.47)

where the last equality follows from (3.19). Take the Jacobian of F' with (3.27) (ii), by (3.19) and
(3.47), we obtain [by regarding @ as in C(x)((y))],

X dcj
= P, 4
R (3.48)

Since @ has the form (3.47), by Lemma 3.3, we see that when we expand @) as a power series on
P [that is, (3.48)] and when P is set to Fp, the series [i.e, (3.48)] must converge absolutely and
uniformly for z € [0,1] := {# € R|0 < a < 1}. This together with (3.45), (3.46) and (3.48) implies

o0 . 00 dC
0= 3 (W) -gO)p= 5 [ TR
j=—mC j=—m&Jo 4T
b dej
= 0 ji_zm ded /Q‘P Po /Q‘y =Yo(z
1
:ml/ dr+0@) =m™ +0(e), (3.49)
0

which is a contradiction, where the sixth equality of (3.49) follows from (3.47), (3.28) and (3.29),
and the fifth follows by noting that Q‘ p—p, means that we need to express (J as an element in
C(x)[[P]] [i-e., use (3.27) (i) to substitute y, that is exactly the equation (3.48)] then set P to Py,
which is equivalent to directly setting y to Yp(z) in @ [cf. (3.28)]. This means that if (3.3) holds,

then we must have (3.4), i.e., we have Theorem 1.3. O

Remark 3.5. From the proof of Theorem 1.3, we see that it is enough to take, for example, sq
to be (where m@ = deg G)

8o =%, where o = 2(m + mG)2 +2 (|Coeff(Fa xly])| + |Coeﬂ“(Ga$iyj)‘)’ (3.50)
i,]
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4. PROOF OF THEOREM 1.4

Proof of Theorem 1.4. Obviously, Ay, , defined in (1.16) is nonempty by assumption (1.15). To

prove the boundness of Ay ,, assume, for i = 1,2, ...,

(poi>P1i) = (($0i,y0i), (xli,yli)) € Akg ks (4.1)

is a sequence such that the height hy,, ,,, — 0o. By definition, we have |zo;| = ko, |x1;| = k1. Thus
1Y0i| = hpoiprs OF |Y1i| = hpgipr;- In any case, at least one inequation of (1.13) is violated. Hence
Apg iy is bounded.

To prove the closeness of Ay, x,, let (4.1) be a sequence converging to some (pg,p1) =
((z0,90), (x1,y1)) € C*. Then o(po) = o(p1) and |zo| = ko, |z1] = k1. We must have py # py
[otherwise, the local bijectivity of o does not hold at the point pg, cf. arguments after (7.3)], i.e.,
(o, P1) € Ay ey, and so Ay, i, is a closed set in C*, namely, we have Theorem 1.4 (i). From this,
we see that 7y, ;. in (1.17) is well-defined.

Now we prove Theorem 1.4 (iii). We will prove (1.18) (b) [the proof for (1.18) (a) is similar, but

simpler, cf. Remark 4.2]. First we claim

Yoo > 0. (4.2)

To see this, by definition, there exists ((O,gjo), (0,@1)) € Ao, for some go,y1 € C with gg # 71,
thus also ((0,91),(0,70)) € Aop. By definition, Yoo = max{|Jol, 71|} > 0, i.e., we have (4.2).

Fix ko > 0. For any given k} > 0, let
B = max{Yy, , k1 < ki}

= max{ [y1] | (po,p1) = ((z0,%0), (z1,41)) €V, |wo| = ko, |z1] < k] }. (4.3)

Assume conversely that there exists k; < k] with 7y koky = B- We want to use the local bijectivity

of Keller maps to obtain a contradiction. Let & > 0 be a parameter such that & — 0 [cf. Convention
2.1(3)]. Let

(0. 1) = ((Zo,%0), (Z1,51)) €V with [Zo| = ko, |T1] = k1, |§n] = 5. (4.4)

Set (and define Go, Gy similarly)

ﬁsz(io—i—x,g]O—l—y), F1:F(i"1+x,§1+y). (45)

Denote

6~10 = Coeff(ﬁbv 3313/0), bO = Coeff(F07 1’091)7 a= Coeff(pla 9012/0), B = Coeff(pla UCOyl)- (46)

We use ¢, do, ¢, d to denote the corresponding elements for G, G1. Then Ay = (go 29) and A = (g 2)
0 a0

are invertible 2 x 2 matrices such that det Ag = det A = J(F,G) = 1. For the purpose of proving

Theorem 1.4 (iii), we can replace (F, G) by (F, G)Aal, then Ay becomes Ay = I3 (the 2 x 2 identity

matrix), and AA; ! becomes the new A. Then we can write [here “=" means equal modulo terms
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with degrees > 3 by defining degz = degy = 1]

Fo=a+ B+ 52xy + 33y2, F| =az + By + @122 + Goxy + dsy?,

@0 =y+ a1z + asxy + &3y2, é1 =cr+ Jy + agz® + asry + 563/2, (4.7)
for some a;, &, B; € C, where, by subtracting F} (resp., G’Z) by the constant ar = F(Zg, go) [resp.,
ag = G(Zo, 7o) ], we have assumed F;, G; do not contain constant terms.

For any s,t,u,v € C, denote
qo = (0, Y0) = (To + 8&,Jo +t€),  q1 = (21,91) = (T1 + u&, G + vE). (4.8)

The local bijectivity of Keller maps says that for any u,v € C (cf. Remark 4.1), there exist s,t € C
such that (qo,q1) € V, where (s,t) is uniquely determined from (u,v) by the equation

(Fo(ss, t€), Go(s¢, tS)) - (Fl (ue, ve), Gy (ue, ve)) . (4.9)

Remark 4.1. When we consider the local bijectivity of Keller maps, we always assume u,v € C
are bounded by some fixed s € R (which is independent of £, and we can assume € as small as

. . .
we wish, for instance £ < s7%).

In fact we can easily use (4.7) to solve s,t up to O(&)! as follows,
s =50+ 0(&), 50 = au + bu. (4.10)
We want to choose suitable u, v such that
(i) [#ol = |20 + s8] = |Zo| (=ko>0), (i) |9 =g +vel>]p| (=5).  (411)

If @ # 0 in (4.10), then we can easily first choose v to satisfy (4.11) (ii), then choose u to satisfy

(4.11) (i) [cf. (4.10); we can also regard s as a free variable and solve u = @~ (s — bv) + O(¢)" from
(4.10), and then using the fact that xg # 0 we can solve s from (4.11) (i) as in (4.16) below]. Since
|z1| = k1 < K}, we also have |i1] < k] [since & — 0, cf. (4.8)]. This means that we can choose
(q0,q1) € V with |&g| = ko, |21| < k7, but |g1| > B, which is a contradiction with the definition of

B in (4.3).

Now assume @ = 0 (and so b#0,¢&# 0). In this case the situation is more complicated.

Remark 4.2. Before continuing, we remark that the proof of (1.18)(a) is easier: in that case
condition (4.11) (i) should be replaced by the condition |Z; + u&| = |Z1|, which can be easily
satisfied even in case k1 = 0 (i.e., Z1 = 0). Thus (1.18) (a) holds.

Now we continue our proof. Since |Zo| = ko > 0, and [§1| = 8 > 7Y o > Voo > 0 [Where the

first inequality follows from the definition of 5 in (4.3), the second from (1.18) (a) (cf. Remark
4.2), and the last from (4.2)], we can rewrite (4.11) as [cf. (4.10)]

() M+sel=1, (i) 1+og>1, where o=g;', &=i,"'s, (4.12)

and regard 0 as a new variable. Set [see also arguments after (5.9)]

Fy = iy ' Fo(zo,y), Go=GolFoz,y), F =iy 'Fi(i1z,91y), G1=Gi(d1z,51y), (4.13)
17



and rewrite [cf. (4.7); we now use b, c,d, which are different from b, d in (4.7), to denote the

coeflicients of linear parts of F T, G’l]

F0:Zaiyi+:v<1+2diyi)—l—-~, FlzEbizi—l—by<1+2i)izi>+---,
i>2 i>2 i>2 i>2
G0:y+ZC¢yi+---, G1:z+2dizi+---, where z=cx+dy, (4.14)
i>2 i>2

for some a;, a;, b;, l;i, ¢,d; € C, and where we regard Fl, G as polynomials on y, z and we omit
terms with z-degree > 2 in Fy (or > 1in GO), and omit terms with y-degree > 2 in P (or > 1in

@1), which will be irrelevant to our computations below. In this case, by (4.14), we can solve
§=0bo+0(e)h (4.15)

If by, # 0 [cf. Convention 2.1(1)], we can always choose suitable v € C with 0, > 0 such that
both (i)’ and (i)’ in (4.12) hold. Alteratively, we can also regard § as a free variable [and solve
o =b"15+0(&)! from (4.15)] and determine § by solving 8, from (4.12) (i)’ to obtain

. 14 (1— 82 %) §2 ¢
bre = ( F— e __ 5 + 0(£)3, (4.16)

then choose iy [with (b718),e = b*e‘greﬁ;lg‘mé‘m = biﬁfgm + 0(&)! > 0] to satisfy (4.12) (i)'
Now assume b € R.g. We claim that for at least one i > 2, we have
(ai,¢i) # (biy ds). (4.17)

Otherwise we would in particular obtain (and the like for G)

F(j(h gU + k) = jOFO‘(x,y):(O,k) = i‘Opl (z,)=(kc=1,0) = F(i‘l + kfilc_la gl)v i-e-a (418)
o(po) = o(p1) with
po = (20,90) = (Fo. o + k),  H1 = (#1,91) = (&1 + kF1c, §1), (4.19)

for all k > 1 [cf. Convention 2.1 (3)]. Then hy, 5, ~ k [when k > 1, cf. (3.6)], and |&1 + §1| ~
k- hﬁ, a contradiction with (1.13). Thus (4.17) holds. Then, if necessary, by replacing G; by

Gi+ FZQ for i = 0,1 (which does not change the linear parts of Fg, Fl, éo, Gl), we may assume, for
some minimal ¢g > 2,

Cig # diy- (4.20)
By replacing Fj by Fj + 2121202 z@; for some f; € C and j = 0,1, thanks to the term y in Go, we
can then suppose, for 2 < i < 2ig,
a; = 0. (4.21)
Now we need to consider two cases.

Case 1: Assume by # 0 for some k < 2iy. Take minimal such k > 2. Setting [the second equation

amounts to setting z = wé in (4.14)],

0 = vek1, uw=ctw—ctdoeh !, (4.22)
18



and regarding ©,w as new variables, we can then solve from (4.14) [cf. (4.10), (4.12) and (4.15);
observe that all omitted terms and all coefficients a;’s, l;i’s do not contribute to our solution of §
up to £¥] to obtain, for some nonzero b’ € C (by the facts that by # 0 and k& > 2 is minimal),

5= (b + Vwk)eF1 + O(e)E. (4.23)

Using this and the first equation of (4.22) in (4.12), one can then easily see that (4.11) have
solutions [by taking, for example, © > 0 so that (ii)’ holds and then choosing w to satisfy (i)'].

Case 2: Assume b; =0 for 0 < i < 2iy5. By computing the following coefficients, for i > 1,
Coott (J(Fo, Go), 2%") = 0 = Coer (J(F1, G1), 2°"), (4.24)
and induction on ¢ for 1 < i < ip, one can easily obtain [using (4.20) and (4.21)]
a; = by for i <ig, and a;, # b, (4.25)

In this case, by setting [the first equation below means that 9€ contributes a positive O(&)%%
element to the left-hand side of (4.12) (ii)’ since it does not have a real part, in particular (4.12) (ii)’
holds],

b = wvyighot u=clw—c tdojigo!, (4.26)

for v1 € Ry, we can then solve from (4.14) to obtain, for some nonzero bv” € C [by (4.25); all

omitted terms in (4.14) do not contribute to our solution of § up to £2%],
38 = buyig™ + b'vpiw %0 4 O(g)%o+l, (4.27)

Since b € R, we see that (4.27) can only contribute an O(£)% element to (4.12) (i)’. Using
(4.27) and the first equation of (4.26) in (4.12), one can again see that (4.11) have solutions by
choosing suitable w. This proves Theorem 1.4. O

5. PROOF OF THEOREM 1.5 (1)
To prove Theorem 1.5 (1), let us make the following assumption [cf. Remark 1.6 (3)].
Assumption 5.1. Assume Theorem 1.5 (1) is not true.
Under this assumption, we have
Lemma 5.2. For any 0 € R>q, k, ko, k1 € Ryo with k> 1,0 < %, we have Yprvsg gy < KV kg ks -
Proof. Assume the result is not true, then by choosing ¢’ with § < §’ < % and by Theorem 1.4 (iii),

we may assume Ypisg pp > l?:’)/kmk,1 for some k, ko, k1 € Rsg with & > 1. Thus we can choose

sufficiently small d1,d2 € Rsq with §; < ¢’ satisfying (the following holds when §; = do = 0 thus
also holds when 67,02 > 0 are sufficiently small)

146
Ry (7121+5’k0,15k1 +02)

(%kl)lJr(;l
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Take k > 1. We define Vj to be the subset of V' consisting of elements (po, p1) = ((:Uo, Yo), (21, yl))

satisfying [our aim is to design the following to satisfy Theorem 1.5 (1)]
_ 1+6'—k=3 — - 1+ +k—3 143
(a) 1 < (ky 'fa]) < kg ol < (ky ) < BT

(b) Y2l + 02 Voo k kg T 02
’x1|1+61 = (/;3/61)“51

(5.2)

Then we can rewrite the above as the form in (1.19), and obviously we have (1.21). Further, by
definition, there exists

(o, p1) = ((Z0,%0), (F1,91)) €V with || = ko, 71| = Kk, |91 = Vo kg - (0-3)

Then one can easily see that (po,p1) € Vo, i.e., Vo # 0.
Let (po,p1) € Vo. In (5.2) (a), if the equality occurs in the first inequality, or two equalities

simultaneously occur in the second and third inequalities, then we obtain that |x1| = k1, |xo| = ko,
but by (5.1), (5.2) (b), the definition of 7, , and Theorem 1.4 (iii), we have

|.’L’1‘1+61 (’}/I}l+§/ko Ekil + 52)
IYkO,kl :7|xo|,\x1\ > ‘y1| > (l_€k1)1+51 — 02

é
B ey Ot (’7151+6’k0,12k1 + 02) 5
- (Ekl)lﬂil —02 > fyko,kl’

(5.4)

which is a contradiction.
If the equality occurs in the last inequality of (5.2) (a), then one obtains that |z1| ~ k, |xg| ~

k' when k > 1 [cf. (3.6); see Remark 5.3; note that M =1+ O(k™1)%]. By (5.2) (b), we
have [y1| = |z1|"% ~ k191, Note that (1.14) in particular implies that either hy, p, ~ |zo| ~ |yol
or hpypy ~ |x1| ~ |y1|, in any case we obtain that hp,, = kit (in fact the latter case cannot

_ 146 «“ 9 : / 1
occur as |r1| = k < k""" < |y1]). We have (where the part “>~" follows by noting from ¢’ <

(148" )ym
that [y = k101 = k= k- mr )

a+éhym ]
lz1 + 1| = [ya| = || ~ | = k5 = b (5.5)

a contradiction with (1.13). This shows that Theorem 1.5 (1) holds, a contradiction with Assump-
tion 5.1. The lemma is proven. O

Remark 5.3. Note that when we design the system (5.2), k is simply some fixed positive real
number. When we say k > 1, it means that we may need to choose sufficiently large k such that
the system (5.2) can satisfy our requirement. This will also apply to some similar situations later.

Lemma 5.4. For any ko, k1 € Rxo, we have 7y, . > k1.

Proof. Assume the result is not true, then by choosing k{, € R~ with k{, < ko, we may assume

Vigka < K15 (5.6)
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V!
for some k), k1 > 0. Denote a = kglkl < 1 by (5.6). By Lemma 5.2, we have Viekt ek < KV kg oy =

kkio for all k> 1. Let

(po.p1) €V with |zo| = kk{, |z1] = kk1, |y1] =YVt oy < FF10v. (5.7)

Then as in the proof of the previous lemma, we have hy, ,, ~ k when k > 1, but then

m

|$1 —|—y1| > |IL’1‘ — ]yl\ > (1 — Oé)kkl > h;;:;ll, (58)

which is a contradiction with (1.13). This proves Lemma 5.4. O
Now we fix sufficiently large k > 1. Take
(Po, 1) = ((Z0,%0), (#1,41)) € Ak with |To| =71 =k, [51] =7y > k, (5.9)
where the inequality follows from Lemma 5.4. Similar to (4.5) (but not exactly), we define
Fy = F(zo(1+x),50 +y), Fi=F(zi(1+2),51(1+y)), (5.10)

and define G, G similarly [thus the matrices A, A defined after (4.6) now have determinants
det Ay = ToJ(F, G) # 0, det A = 7151J(F,G) # 0, and again by replacing (F;, G;) by (Fi, G;)Ag*!
for i = 0,1, we can assume Ay = Ip]. Similar to (4.7), we can write [from now on, we only need
the linear parts of F, G|,

Fy=x, F1 = —agx + by, (5.11)
Go=vy, G1 = cx + dy, (5.12)

where we have written the coeflicients of x,y in F} as —ayg, by to emphasis that they may depend
on k (of course other coefficients also depend on k) and that ag, by, are in fact positive as shown
in the next lemma.

We define qp, 1 accordingly [similar to, but a slightly different from, (4.8), simply due to the
different definitions in (5.10) and (4.5); we emphasis that the choice of & depend on k: in general
the larger k is, the smaller &; but in any case once k is chosen we can always choose sufficiently
small €, cf. also Remark 4.1],

g0 = (0, 90) = (To(1 +s€), Jo +t€),  qu = (d1,41) = (T1(1 +ue), 7u(1 +ve)).  (5.13)
In particular, we have as in (4.10),
s = —apu + b + O(E) . (5.14)
The numbers ayg,, by will play very crucial roles in our proofs in this section.

Lemma 5.5. We have ag > 0, by, > 0.

Proof. First assume agim 7 0 or agre < 0 Or bgim # 0 or bgre < 0 [cf. Convention 2.1 (1)]. Then
from (5.14) one can easily choose u,v [with uiy, # 0, ue < 0, vim # 0, vye > 0 such that either
(agu)re > 0 or (bgv)re < 0, and so sy < 0] satisfying [cf. (5.13) and (5.14)],

0<ko:= ’$0|:k‘1+85|<k, 0< ky:= ’i1|:k’1+u5|<k,

1] =Ygl + 0] >V g (5.15)
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Le,0<ko<kandO<k <kwith7y, . > [91] >}, a contradiction with Theorem 1.4 (iii).
Thus ap, > 0 and b > 0.

If a, = 0, similar to arguments after (4.12) [see also arguments after (7.7)], we may have two
possible cases [cf. (4.22), (4.23) and (4.26), (4.27)]:

v=0ek1, uw=ctw—ctdogh s = (bpd + 'wk)ek 1 + 0(e)*, (5.16)
v=013E",  w=clw—ctdogig®l,  s& = b1 + Vv gwiog?o + 0(5)2i°+1, (5.17)

where 0,w € C, v1 € Ry, V',V € Cy, k,ig € Z>3. Assume we have the case (5.16) [the proof
for the case (5.17) is similar|, we can first choose 0 with 0y, > 0 so that the last inequation of
(5.15) holds, then choose w with (¢~'w);e < —1 (sufficiently smaller than —1) and (V'w*),e < 0
(sufficiently smaller than —1, such w can be always chosen since & > 2) such that the first two
inequations of (5.15) hold. Thus (5.15) holds, and as before we obtain a contradiction. Therefore
ag > 0. Similarly b > 0. The lemma is proven. O

Lemma 5.6. For any fived N € Rsg, let §' € Rsq be such that &' > In(k)™" (where In(-) is the
natural logarithmic function), we have k <7, < (14 ")k

Proof. By (1.14), when k > 1, we either have hp, 5, ~ |zo| ~ |yo| or hpy 5, ~ |z1] ~ |y1]. In any
case, hpop ~ k. If Y, . > (1+6")k, then when k > 1,

21+ 51| > 51| — 7] > 6k > In(k) Nk = kmil ~ hE (5.18)

a contradiction with (1.13). O
Lemma 5.7. For any fizred § € Rsg with § < %, we have by, > 1+ § + ag, for all k> 0.

Proof. Assume the lemma does not hold, then we can choose sufficiently small 6; > 0 (which can
depend on k) such that

(14+61)bg, <1+0— 01+ ag. (5.19)
Let £ > k (we can assume £ < ¢, cf. Remark 4.1). We define 1} to be the subset of V' consisting
of elements (pg, p1) = ((a:o, Yo), (z1, yl)) satisfying [again our purpose is to design the following to
satisfy Theorem 1.5 (1)]

-1 3
TR A

<k ol < (k7 ) <0 >1+€% (5.20)

(k71|x1‘)1+61 -

— )

() 1< (kY |) O

Then we have (1.19) and (1.21).

Remark 5.8. Recall from statements inside the bracket before (5.13) and Remark 4.1 that when
k is fixed, £ can be fixed, and we can assume & < £~ for any ¢ > k. We here emphasis that the
¢ used in the above design of the system of inequations in (5.20) is exactly the same as that used
in the local bijectivity of Keller maps in (5.13). There is no any problem in doing this since our
design does not need to use the local bijectivity of Keller maps, we only use the local bijectivity
of Keller maps to show that the set V{) we defined is nonempty [in the sense of defining the system

(5.20), ¢, k, € are simply some chosen (and fixed) positive real numbers, cf. Remark 5.3].
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Let (po,p1) € Vo. In (5.20) (i), if the equality occurs in the first inequality, or two equalities
simultaneously occur in the second and third inequalities, then |z1| = |xo| = k, but by (5.20) (ii),

|y1] >V > @ contradiction with the definition of 7y, ;.

If the equality occurs in the last inequality of (5.20) (i), then we can obtain that |z;| ~ ¢ (when
¢>> k and k is regarded as fixed; cf. Remarks 5.3 and 5.8), |zo| < £}, but by (5.20) (ii),

lya| = 00 = g . (5.21)

Again by (1.14), we must have either hy, p, ~ |zo| ~ |yo| Or hpyp ~ |Z1] ~ |y1|. In any case we

have Ay, =< 010 < (5 but then |1 + 1| > 1| — |21| ~ || = hﬁ, a contradiction with
(1.13). Hence Theorem 1.5 (1) (ii) holds.

Next, we want to choose suitable u, v such that (5.20) holds for (go,q1) [defined in (5.13)], i.e.,

1+ ve|+ &3
L+vel+67 o L2 (509)

. 14+6—81—£73 1+6 1+6 (12

The strict inequality automatically holds in the last inequality of (5.22) (i) (we can assume & < £7¢,
cf. Remark 4.1). We take
ap+1+90—461

u=1, wv= 2 , and s=146—06; +0(), (5.23)
k

where the last equation is obtained by (5.14). Then by comparing the coefficients of £, one can
easily see that all inequalities in (5.22) (i) are strict inequalities. Further, the coefficient of €' in
the left hand-side of (5.22) (ii) is %ﬁ‘s_él —(1441) > 0 by (5.19). We see that (go,q1) € Vb, i.e.,
Vo # 0, a contradiction with Assumption 5.1. We have Lemma 5.7. O

Lemma 5.9. For any fized § € Rsq, we have (1 — 8%)by, < 1+ ay for all k> 1.

Proof. Let k > 1 and we assume £ < k% (cf. Remark 4.1). Define Vj to be the subset of V'
consisting of elements (pg,p1) = ((azo,yo), (:cl,yl)) satisfying [again our purpose is to design the
following to satisfy Theorem 1.5 (1); cf. Remarks 5.3 and 5.8]

(1) (1 _ 55)1+k73 < (k71’x1’)1+k_3 < k—l‘xo‘ < (k:fl’xl‘)lfk_3 < 17

-1 3
yi| +¢&
iijﬁdeE521+§. (5.24)
(kfl‘xll)

We have (1.19) and (1.21).
Let (po,p1) € Vo. If the equality occurs in the first inequality of (5.24) (i), then we obtain that
lz1| = (1 — 8°)k, |zo| < k, and by (5.24) (ii), Lemma 5.6, we have

1] > (1= 8%y, > (1 _ 804810 ¢ 0(5)15)k > |z1]. (5.25)

As before, we would obtain that |z1 + y1| > |y1| — |#1] ~ |y1| = k = km+T ~ h}ﬁ (when k> 1,

cf. Remarks 5.3 and 5.8), a contradiction with (1.13).
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If two equalities simultaneously occur in the second and third inequalities of (5.24) (i), or the
equality occurs in the last inequality, then [21] = [zo| = k, but by (5.24) (i), |y1] > Vg4, a
contradiction with definition (1.17). Hence Theorem 1.5 (1) (ii) holds.

Next, we want to choose suitable u,v such that (5.24) holds for (go,q1) [defined in (5.13)], i.e.,

(1) (1= < |1+ ue ™ " <1456 < [1+ue)F° <1,

|1+ ve| + €7 2

(i)

The strict inequality automatically holds in the first inequality of (5.26) (i). Take [the last equation
is obtained from (5.14)]

1+ak

o and s=—14+0(). (5.27)
k

u=-—1, v=
By comparing the coefficients of £!, we see that all inequalities in (5.26) (i) are strict inequalities.

Further, the coefficient of £! in the left hand-side of (5.26) (ii) is 1 — &° — %, which is positive if

the assertion of the lemma is not true; in this case, we see that (qo,q1) € Vb, i.e., Vo # 0, and we
obtain a contradiction with Assumption 5.1, namely, we have Lemma 5.9. U

. Since 9 is arbitrarily sufficiently small number,

4
The above two lemmas show that a; > %(41%)

we see that ay (thus also bg) is unbounded, i.e.,

lim ap = lim by = oo, and in fact, lim 2% — 1. (5.28)
k=500 k500 k—oo by,

Remark 5.10. From the proofs above, one can see that in order to achieve our task, we must
choose the power of |z in (5.2) (b), (5.20) (ii) and (5.24) (ii) [i.e., kg in (1.19)] to be different from
1. In case kg > 1 as in (5.23), we must choose v to be positive and v > kgu [so that |y;| can grow
faster than |z;| as in (5.21)]; while in case kg < 1 we must choose kg to be independent of k as
in (5.24) (ii), and choose v to be negative but bigger than xgu as in (5.27) so that (5.22) (ii) and
(5.26) (ii) can hold [such choice of kg can guarantee that |y;| can descend much slower than |z]
as in (5.25)]. However because of (5.28), our task becomes extremely difficult, simply because of
the fact that any choice of v > rgu will force s = —agu + bpv + O(€)! to be too large [which in
turn will push |zg| to grow too fast], thus we have to choose v to be smaller than u, but such a
choice will force |y1| to grow slower (or descend faster) than |z;| and then we are unable to obtain

a contradiction if we use the previous design — this forces us to design a very complicated system
in (5.31).

Finally we are able to obtain the following (which is the most difficulty part of the paper).
Lemma 5.11. Theorem 1.5 (1) holds.

Proof. We first fix some choices of positive numbers satisfying

l<l:=6"<t =6 <k (5.29)
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For any (po,p1) = (({L‘(),yo), (xl,yl)) € V, we simply denote, for i = 0,1 [recall (5.9) that |Zo| =
"/El‘ =k, |gl, :W/k,kL

Yi =4 'y, Xi=z; ', Xo = (1 + 46%) X, X, = (1+56%)X;. (5.30)

We now define Vj to be the subset of V' consisting of elements (pg, p1) = ((:co, Yo), (21, yl)) satisfying
the following [one will see from the proof below why we have to design such a complicated system;
we suggest that readers do not need to check details at this moment — we will explain everything
when our arguments are carried on step by step so that all will become clear],

13(14-6) 13(146) 13(1-6)

@) o 7= <|Bil" m <|[Bo| < |Bil w0 <1,

LS oy _ 10(1+45)
(i) | Xo| < (L+0)|Xa],  (iil) By :=|Bs|- [Bi|"~ 7= - V4" + | X316} + [V|6} > 1+ 267,
9  4X v (94X va(l | 2X1\5
A o ~ Xo(5-55%0) L XG+E
(IV) Bl— S 2’ A BQ— S 1 e ~100, V1 3——~5 9 AE (531)
Xl(g‘f‘ﬁ) X1(§+ﬁ)(1_54+54X1 ) XO(E_ﬁ)

We will see from (5.36) that (5.31) can be rewritten as the form in (1.20). We remark that the
main purpose of the initial condition (5.31) (ii) is to guarantee that we have (5.36) (ii), which is
extremely crucial in the proof of Lemma 5.11 [we wish to mention that (5.36) (ii) is the most

difficult result for us to obtain].

Now we divide the proof of the lemma into three steps.

Step 1: First we prove that V # 0, namely, (po, p1) € Vo. To see this, we take (pg, p1) = (Po, p1) in
(5.31). Then by (5.30), Y; = X; = 1 for i = 0,1, and Xg = 1+ 62, X; = 1+ ud? with s =4,u =5
[in particular we have (5.31) (ii)]. One can easily observe from (5.31) (iv)—(vi) that the coefficients

of 2 in By, Bo, B3 are respectively

4 2 73 4 2 13
c1 :—g(s—u)—u—g(u—s):—ﬁ, czzs—g(s—u)—u—g(u—s) =1
2 4 2
c3=4u+5x -(u—s)—bs+bxX —(s—u)=—-. (5.32)
3 5) 3
We have
13(1+0) 13(1+0) 1362 1363 4 1362 A
B =1-— - — Bi|=1———
0B < |By| 15 15 +0(9)" < |B1] 15 + 0(9)
3(1-5) 1362 1383

i.e., (5.31) (i) holds. Further, B = 1 + % + 0(8)* > 1+ 282 (note that 6; < 9), i.e., (5.31) (iii)
holds. Thus (pg,p1) € Vo.

Step 2: For the sake of convenience to state our arguments, we regard {; = 6; 1 as a variable
and take ¢1 > ¢ [which means that other elements in (5.29) are regarded as fixed and we choose
{1 to be sufficiently larger than ¢, cf. Remark 5.8; in this sense, 1 ~p, ¢ <y, ¢1 <4, k; here to
avoid confusion, we use the subscript “,, ” to indicate that ¢; is regarded as a variable (similar

notations will be used later)]. In particular, by (5.31) (i), we have |Bi| ~y, 1 ~y, |B2|. By
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(5.31) (ii), (iv), (v), we have

: 46 94X 94X 41X, 48
H1-—< 41Xol 5.:‘7——}‘§7+ %l 5,
575 51| 55Xy 5 5|X1| 5 5
2X X 1— 0% 4 54X 00
‘7 n —J’ S (i) BBy = R (5.34)
33Xy XO Xo
s . . . 2| X1 | 2 1
where (5.34) (ii) is obtained by noting that 3‘)};‘ > 35 > 3 Thus B ~¢ 1, and by

(5.31) (iv), (5.34) (ii), | Xo| ~¢, |X1|?, which together with (5.34) (iii) gives that |Xo| ~¢, |X1| ~e,
1. We obtain [in particular we have (1.21)],

1 2X;
3 3Xo

9 4X0

D) [ Xo| ~p | Xy ~ Z
(1) [Xo| ~e, [X1| ~g 5 5%,

20 |22 1 ) - 8 SR g, 1

2
(iif) 610 < |Y3| =, 1, (5.35)

where (5.35) (ii) is obtained from (5.31) (v), and (5.35) (iii) is obtained as follows. If |Y7| < 5?, then
we can see from (5.35) (i), (ii) that B; < 1, a contradiction with (5.31) (iii); if |Y7] >,, 1, then by
(5.9), (5.30), (5.35) (i), (ii), we see that |y1]| = [Yi[ Vg p =a |21] = [X1lk and |y1] =¢, |20| = |Xolk,
which is a contradiction with (1.14). By (5.35), we obtain that |Y;|®* < 14 O(d1)! and then

Bs| - (B~ P X082+ |Yal6% = |Bs| - |Bim T+ O@8)Y, thus by (5.31) (iii), we

obtain (5.36) (i) below,

10(1+45)

(i) By :=|Bs| - |Bi| =~ 7 >146% (i) [Xo| < (1+0)[X], (5.36)

where (5.36) (ii) is obtained as follows. Assume |Xo| > (1 + 6)|X1], then |Xo| = (1 4+ &)|X1| by
(5.31) (ii). First suppose |X| > ¢70. Then by (5.31) (v), (5.36) (i), we have,

S 4y 1001+49) 1 9| %,1 [\ 5+ 10(1+45)
B! < X3 " (3 3|Xo|) 1+ 0(5)1 1 5 g7
3= ~ 5 10(1+49) TS @4,0(5)1 < ? ( . )
X ’5<9 _ 4\Xo\) M | X173
G

which is a contradiction with (5.36) (i). Thus |X;| < 70, and so 1 — &4 + §4X100 — 14 0(6)?, and
we obtain from (5.31) (iv), (v) the following,

(i) Bo = XoBy (1+0()*), (i) |Bi] = [Xo| 800" (14 0(6)*), (5.38)
where (5. 38) (ii) is obtained as follows: by the second and third inequalities of (5.31) (i), we have
B3 100)" = |By| = |XoBy|(1 + O(6)®), which gives (5.38) (ii). From this and (5.31) (iv), we
have

2X ~ ~
—J) + 4X0X1_1‘ <
Xo

> /1 5(% + 3(124-5)) v |—8B40(5)! 3
9= ’531)(1 (g + 2 X (1+005)) +4(1+9), (5.39)
which implies that [Xo| < 1 — 45 + O(8)2, and thus by (5.38) (i), |By| > 1, a contradiction with

the last inequality of (5.31) (i). This proves (5.36) (ii).
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Step 3: Now let (po,p1) € Vp. First assume in (5.31) (i), the equality occurs in the last inequality,

or two equalities simultaneously occur in the second and third inequalities. Then |B;| = |Bs| =1
and [Bs| > 1+ 6% by (5.36) (i). By (5:31) (iv), (5.34), we have |%1(} + 25)| = 8 < 3, which
together with (5.31) (i) implies that |X;| < 10. Thus 1 — §* + §*X100 = 1 + O(8)%, and so by
(5.31) (iv), (v), | Xo| = [B2B (1 + O(6)*) = 1+ O(8)*%. By (5.31) (ii), (iv), (vi), we have

, = /12X, = /1 2| X | AV
= 531X, (= AXoXTH <5|X1| (5 + —————) +4(1+0(5)*)|X
9= pBi%a(5+ 12) + 40X <515+ 5 i) + (100 1T
(i) | X1 = | Xg P BByl <1 - 6%+ 0(6)*, (i) 1+ O(6)* = | Xo| < (1 + )| X]. (5.40)

Equ. (5.40) (i) implies that either |X;| > 1+ O(0)* or |X1| < _15"2’70 V105 4 O(6)* < %, which
contradicts either (5.40) (ii) or (5.40) (iii).
Next assume in (5.31) (i), the equality occurs in the first inequality, i.e., |Bi| = §, and by the

second and third inequalities of (5.31) (i), |Bz2| = 57 TOO! L, 573, By (5.31) (iv), (v), (5.34) [note
that (5.34) (ii) still holds if ¢; is replaced by ¢], we have

(i) [X2XG ! ~e |Bi ™ = £, (i) | Kol ~e [BoXPXG (1= 8% 4 61 X]%)| -7 F10H100 - (5.41)

which implies that [Xo| ¢ |X1|, which is a contradiction with (5.31) (i).

Finally by (5.36) (ii), we see that the equality cannot occur in the inequality of (5.31) (ii). This
proves that Theorem 1.5 (1) (ii) holds.

The above shows that Assumption 5.1 must be wrong, namely, we have the lemma. O

6. PROOF OF THEOREM 1.5 (2)

Proof of Theorem 1.5 (2). Now we prove Theorem 1.5 (2). Let (po,p1) = ((z0,%0), (z1,41)) € Vo,
ie., (1.19) or (1.20) [cf. (5.31)] holds. Note that (1.19)—(1.21) imply that zo,z1,y1 # 0. Similar
o (4.5) and (5.10), we define

Fy=F(zo(14+2),90+y), Fi=F(@(l+2),n(+y), (6.1)
and define Gy, G similarly. Define g, ¢; accordingly [similar to (4.8) and (5.13)],
q0 := (Z0,90) = (wo(1+ s&),y0 + t€), @ := (d1,91) = (21(1 +u&),y1(1 + vE)). (6.2)
As in (4.10) and (5.14), we have,
s=s50+0(&), so=au+bv. (6.3)

Remark 6.1. We remark that the £ here shall be regarded to be different from that in the

previous results, here £ may be much smaller than the previous £. If we denote the previous € as
¢, whenever necessary we can assume our new & satisfies that & < &€,

Now we consider two cases.

Case 1: First assume we have the case (1.19). If no equality occurs in any inequality of (1.19) (a),

then we only need to consider (1.22), which can be easily done. Thus by Theorem 1.5 (1) (ii), we
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may assume that the equality occurs in the third inequality of (1.19) (a) [the proof is similar if the
equality occurs in the second inequality of (1.19) (a)], i.e.,
Rl |

Ky —1=0, where k= (6.4)

K‘,3|.T0| ’

Then we only need to choose (go,q1) to satisfy the third inequality of (1.20) (a) and (1.22). By
writing [using (6.3)]

% = (L4 ue) > (14 58) 71| = |14 (k5 — a)u— bu)e +---, (6.5)

we need to choose u, v so that (qo, q1) satisfies the following, for some &; € C,

(i) C1 = |1 + ((k5 — a)u — bv)€ + (azu® + aquv + 545112)82‘ —1+0()3 >0,

(i) Co := |1+ v€| + Kh — (1 + Kh)|1 + Ksué + agu’e?| + O(€)* > 0, (6.6)

where k% = r7|y1| ™1, and (6.6) (ii) is obtained by rewriting (1.22) as |y1|?|j|”7 — ‘yﬂ’f'm : IEI:: > 0.
First assume b1 := k5 — a # 0. Then by setting

u = bb; v + (@7v? + agw)e, (6.7)

for some &;,w € C with wy > 0 [cf. Convention 2.1 (1) (2) for notations “;c’, “im” | so that C}
can become [one can easily observe that when we substitute u in (6.6) (i) by (6.7), there are always

solutions of &7, ag so that € can become the following form]
Cr=|1+we —14+0()® = wes? + 0(£)% > 0, (6.8)
i.e., (6.6) (i) holds. Using (6.7) in (6.3), we obtain, for some &; € C,
s = aopv + (a1v* + dow)E + O(€)? . (6.9)
Using (6.7) and (6.9) in (6.6) (ii), we can then rewrite Cy as
Co = [1+ve| + K — (1 + K5) |1 + dgoe + (a1gv? + arrw)e?| + 0(€)® > 0, (6.10)
for some &; € C. By comparing the coefficients of £! in (6.10), we immediately obtain that if
co :=1— (1+ Kh)ag # 0, then we can always choose v [with (cov)re > 0] to satisfy (6.10).

Assume ¢y = 0 (then dg is real). Then we see that Cy in (6.10) is an O(&)? element. In this
case, since we do not know what are values of éiq, &11, our strategy is to compute the following

coefficient [cf. Convention 2.1 (2) for notation Cyegr; also note that we use v, to denote (vre)?],
B =P+ P2 with B1 = Coesr(Ca,v2,62) and By = Coenr(Ca, v2, £2). (6.11)
We observe the important fact that ajg9 does not contribute to 8 by noting the following
(G10v%€)re = (G10re(vE — VEy) + 2G10imVreVim ) €2, (6.12)

and that the imaginary part of G19v?£2 can only contribute an O(£)* element to Cs in (6.10). Thus

for the purpose of computing 3, we may assume é19 = @11 = 0 (then the computation becomes

much easier). Since ag is real, it is straightforward to compute that

f=—T1__ <0y, (6.13)



by (6.10) [remark: the fact that k7 > 0, i.e., B> 0 is very crucial for the inequation (6.10) being
solvable for any unknown &; € C in (6.10), cf. Remark 6.2]. By (6.11) and (6.13), either 5; > 0
or By > 0, and we can then choose v with v2, being sufficiently larger than v?m or respectively

with v2_ being sufficiently larger than v2, to guarantee that (6.6) (ii) [i.e., (6.10)] holds (when w

re’

is fixed). This proves Theorem 1.5 (2) for the case that by # 0.

Assume by = k5 —a = 0. We simply set v = 0. Then we have the following.

e If C1 in (6.6) (i) is independent of u, then C; = 0, i.e., (6.6) (i) holds automatically, in this
case we can simply choose u with uy, > 0 so that Cy = (1 + k%) ksureE + O(€)% > 0, i.e.,
(6.6) (ii) holds.

o Otherwise, C1 = |1 + b'u*ek| — 1+ O(€)FH! for some b’ € Cxo and k € Z>9, and we can
always choose u € C with (b'u¥),e > 0 and uye > 0 (such u always exists simply because

k > 2) to guarantee that both of (6.6) hold.
This completes the proof of Theorem 1.5 (2) for the case (1.19).

Remark 6.2. (cf. Remark 1.6) Assume that we have the following inequation on variable u, where

a1, a2, B1, B2 € Ryg, and a1, a9, a3 € C are some unknown complex numbers:
1|1+ arué + agu€? + a3z < ag|l + ug|? + a1 — ag + O(&)3. (6.14)
Then from the proof of (6.6), one can see that this inequation is solvable for any unknown

a1, a9, a3 € C if and only if aq > as.

Case 2: Now assume we have the case (1.20). First we remark that we have designed the last
two terms of C5 in (5.31) (iii) so that we can solve the inequations below. By Theorem 1.5 (1) (ii),
no matter whether the equality occurs in the second or third inequality of (1.20) (a), the two

inequations we need to consider can be always stated as the following, for some &; € C, k; € R,

(i) Cf := |14 (G1u + agv)e| — 14+ 0(€)* > 0,

(if) Cf := ko|1 + (Gsu + Gqv)e| + |1+ ug| + |1+ ve| — (ky +2) + O(€)* > 0. (6.15)

First assume &; # 0. Then as in Case 1, we can take u = —dl_ldgv + (B1v? + Bow)€ for some
Bi,w € C with wye > 0 so that C{ has the form as in (6.8) [i.e., (6.15) (i) holds], and (6.15) (ii)
becomes the following [cf. (6.10)], for some &; € C,

Ch = k|1 + asve + (Gev” + arw)e?| + |1 + asve + (agv® + drow)e?|
+ 1 +ve| — (ky+2) + O(€)® > 0. (6.16)
As in (6.10), we see that if ¢ := k(a5 + ag + 1 # 0, we can always choose v € C with (cov)re > 0
to satisfy (6.16). Thus assume ¢y = 0. Then as in (6.13), one can compute

~ 1 - ~ ~
B := Coeft (Ch, v2,62) + Coet (Ch, v2,E2) = 3 <(/€6Oé5re+ D)2+ kG (ky+1)a2 4 kHa2 o+ 1) >0. (6.17)

Thus we can choose v with v2, being sufficiently larger than vZ_ if Coer(C, v2,E%) > 0 or with v2_
being sufficiently larger than v2, if Coe(C%, v2,E2) > 0, to guarantee that (6.16) holds (when w is

fixed). This proves Theorem 1.5 (2) for the case that &; # 0.
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Now assume &; = 0. By symmetry, we may also assume & = 0. Then we have one of the
following,

(i) Ci=0, or (i) Cf =1+ g(u,v)e" — 1+ O(e)F, (6.18)
for some nonzero homogeneous polynomial g(u,v) of u,v of degree k € Z>9 [assume we have
(6.18) (ii) as (6.15) (i) holds trivially for case (6.18) (i)]. In case ¢; := K{as + 1 # 0 [see (6.15) (ii) ],
we can solve the problem as follows: First take v = au for some o € C with g(u,au) # 0 [in
this case g(u,au) = buF for some b’ € C] and with |a| being sufficiently small, then we choose
u € C with (c1u)re > 0 so that (6.15) (ii) holds [since |« is sufficiently small (say we choose a with
0 < |a| < |e1]), our choice of u with (cju)re > 0 can guarantee that (6.15) (ii) holds], and further
(V'u*)re > 0 (this can be done since k > 2). If ¢3 := k{dy + 1 # 0, we can solve the problem
symmetrically.

Assume ¢; = ¢ = 0 [then C% becomes an O(£)? element]. One can easily compute as in Case 1,
Ko+ 1
2Ky

Coeff(cé’ “%egz) + Coeff(céa U?m) = Coeff(céa Ur2e52) + Coeff(cév U?m) = > 0. (6.19)

If g(u,v) does not depend on v [i.e., g(u,v) = b'uF for some b € C], then we can first choose
u € C to satisfy that g(u,v)re > 0 then choose v € C with vZ being sufficiently larger than v

if Coeff(Ch,v2.€?) > 0 or with v2_ being sufficiently larger than v2, if Coe(Ch,vZ %) > 0, to
guarantee that Coe(Ch, £2) > 0, i.e., (6.15) (i) holds. Thus assume g(u,v) depends on v. We set
v = au with o,u € C being determined later such that || is sufficiently small. Then (6.18) (ii)
and (6.15) (ii) become the following, for some é;; € C, and some non-constant polynomial go(c)

of o [where the term —#j (1 + a)ué in C} is obtained by the assumption that ¢; = ca = 0, i.e.,

(i) C1 = 1+ go(a)uFe?| — 1+ O(e)* ! > 0,
(ii) C% = Kp|l — Ky (1 + @)ué + anu®e| + |1 — ué| + |1 4 aue| — (kp +2) + 0(£)? > 0. (6.20)

One can compute the following,
/2 o2 /2 1 2 / 2 2 7
6:: COBH(C%ureg )+CO€ff(027uim) 2% Py ((Oére+1) +aim+’€0+aim’%0+are’%0) >0. (621)

We can always choose u € C with u2, being sufficiently larger than w2 if Coer (C%, u%,€2) > 0 or with
 being sufficiently larger than w2, if Coe(Ch,u2 _€2) > 0, to guarantee that Coeg(C%, %) > 0,
i.e., (6.20) (ii) holds; and further (go(oz)uk)re > 0 by some suitable choose of & € C [when |« is

sufficiently small, one can guarantee that the choice of a does not affect the inequality in (6.20) (ii)
by noting that when |a] is sufficiently small, 8 defined in (6.21) is bigger than a positive number
which is independent of a], i.e., (6.20) (i) holds.

This proves Theorem 1.5. O

7. PROOFS OF THEOREMS 1.1 AND 1.2
Proof of Theorem 1.2. To prove Theorem 1.2 (i), we use Theorem 1.5. Denote [cf. (1.19), (1.20)]

L= {lyyp. | (po,p1) € o}, ¢=supL € RygU {400} (the supremum of L). (7.1)
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By definition, there exists a sequence (poi,p1i) = ((@oi,v0i), (z1i,y15)) € Vo, @ = 1,2,..., ie.,

poi 7 p1; and [assume we have case (1.19) as the proof for the case (1.20) is exactly similar],

il + Ky

o(poi) = 0(p1i), Ko < Kilz1|™ < Kalzoi] < Kalrw]™ < ke, 4= |18 > Ko, (7.2)
K]

such that lim; o ¢; = ¢ (cf. Remark 1.6). By (1.21), |zoi|, |z1i| are bounded. By (1.13), we see
that |yo:|, |y1i| are also bounded [as in the proof of Theorem 1.4 (i)]. Thus ¢ € R~(. By replacing
the sequence by a subsequence, we may assume

iililo(poupli) = (po,p1) = ((z0,90), (z1,51)) € CL. (7.3)

First suppose po = p1. Then by (7.3), for any neighborhood Oy, of py, there exists Ny such that
P0i>P1i € Op, when i > Ny, but po; # p1s, 0(poi) = o(p1s), which is a contradiction with the local
bijectivity of Keller maps. Thus pg # p1. By taking the limit ¢ — oo in (7.2), we see that (1.21) is
satisfied by zg,x1,y1 and all conditions in (1.19) hold for (po,p1). Thus (pg,p1) € Vo. Therefore
by Theorem 1.5 (2), there exists (go,q1) = ((&0,%0), (&1,91)) € Vo such that £y 4 > lpyp, = £, a
contradiction with (7.1). This proves that (1.15) is not true, i.e., we have Theorem 1.2 (i).

To prove Theorem 1.2 (ii), as in (4.4) and (5.10), take (po, p1) = ((z0,¥0), (x1,¥1)) € V and set
(and define Gy, G similarly)

Fy = F(zo + apz,yo + v), Fy = F(x1 + aqx,y1 +y), where (7.4)
1 if zg = &, 1 if 1 = &,
oo — 0==2o o — 1=6& (75)
xg — & else, xr1 — & else.

Define qo, ¢1 accordingly [cf. (4.8) and (5.13)]. Then we have as in (4.10) and (6.3) [here we use
symbols a, b, ¢, d instead of a,b,¢,d in (4.7), (4.10) ],

s =au+bv+ 0L (7.6)
Note from Theorem 1.2 (i) that (zo,x1) # (£0,&1)-

First suppose zg # &, x1 # &1 (then ag = g — &y, a1 = 1 —&1). In this case, we need to choose
u, v such that,

Co := Boll + s&|* + Bu|L + uel* = (Bo + B1) <O, (7.7)
where 8y = |20 — &%, 81 = |11 — &1|?. Using (7.6) in (7.7), we immediately see (by comparing the
coefficients of £1) that if b # 0 or a # —,8051_1, then we have a solution for (7.7). Thus assume
b=0,a=—p18;" [then d # 0 in (4.7) and a is real]. In this case, using arguments after (4.11),
we have the similar versions of either (4.22) and (4.23), or else (4.26) and (4.27), i.e.,

w=agk1, v=d 'w—d et !, s = (at + VwF)eF L + 0(&¥), or else (7.8)

u=wu3€°, v =d 'w—d teuie® 1,  s& = aupie™ 4 Vuriwe¥o 4 O(g¥ot),  (7.9)

for some V', 0", u,w € Cxo, u1 € Ry, k,ip € Z>p, one can again find a solution for the inequation
(7.7).
Now if xg = & (thus z1 # &), then the first term of Cy becomes [s€|? = O(£)? and we can

easily choose any u with u;e < 0 to satisfy that Cy < 0. Similarly, if z; = & (thus z¢ # &), then
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the second term of Cp becomes |ug|? = O(€)? and we can easily choose u with (au), < 0 (in case
a # 0) or v with (bv)e < 0 (in case b # 0) to satisfy that Cy < 0. This proves Theorem 1.2. O

Proof of Theorem 1.1. Finally we are able to prove Theorem 1.1. The second assertion of Theorem
1.1 follows from [8, 24]. To prove the first statement, assume conversely that there exists a Jacobian
pair (F,G) € C[z,y]? satisfying (1.5) such that (1.3) holds. Then we have Theorem 1.2. Similar to
the proof of Theorem 1.2, denote D = {dy, p, | (po,p1) € V} [cf. (1.9)], and set d = inf D € R>
(the infimum of D). By definition, there exists a sequence (po;, p1;) := ((x()z-,ym), (214, yh-)) ev,
i =1,2,..., such that lim; .o dp,, p;, = d. Then {zo;,z1;|i = 1,2, ...} is bounded by (1.9). Thus
{yoi,y1: |1 = 1,2, ...} is also bounded by (1.13). By replacing the sequence by a subsequence, we
can then assume (7.3). Now arguments after (7.3) show that (pg,p1) € V, but (zg,z1) # (£0,&1)
by Theorem 1.2 (i), i.e., d > 0. Then by Theorem 1.2 (ii), we can then obtain a contradiction with
the definition of d. This proves Theorem 1.1. O
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